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Quantum electrodynamics of the internal source x-ray holographies: Bremsstrahlung,
fluorescence, and multiple-energy x-ray holography
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Quantum electrodynamid€ED) is used to derive the differential cross sections measured in the three new
experimental internal source ensemble x-ray holographies: bremsstrah, fluorescencéXFH), and
multiple-energy(MEXH) x-ray holography. The polarization dependence of the BXH cross section is also
obtained. For BXH, we study analytically and numerically the possible effects of the virtual photons and
electrons which enter QED calculations in summing over the intermediate states. For the low photon and
electron energies used in the current experiments, we show that the virtual intermediate states produce only
very small effects. This is because the uncertainty principle limits the distance that the virtual particles can
propagate to be much shorter than the separation between the regions of high electron density in the adjacent
atoms. We also find that using the asymptotic form of the scattering wave function causes about a 5-10 %
error for near forward scatterinfS0163-182607)01622-9

[. INTRODUCTION tron holographies produce pictures of where the atoms are,
but they do not accurately reconstruct the atomic positions.
Fifty years ago, Gabor proposed electron holography as &zde also proposed internal source x-ray holography using
method to improve the resolution of electron microscopes sfiuorescence x rays. Because x rays interact weakly with at-
that atoms could be directly imagédsabor’s idea was to oms, internal source x-ray holograms should produce much
focus the electron beam to a very small region of space jughore accurate atomic resolution images than the internal
outside the sample to produce a nearly point source of radiasource electron holographi&® Unfortunately, the price for
tion, and to record the interference pattern between théhis is that the modulation of the intensity in x-ray holograms
spherical reference wave from this point source and th¢1—5x10"3) is about 100 times weaker than the modula-
spherical object waves produced when the electrons scatteréion in electron holograms (35X 10 1).
from the atoms in the sample. This photographically re- Earlier this year, the first atomic resolution x-ray holo-
corded interference pattern would then be used as the diffragrams were produced using x-ray fluorescence hologfaphy
tion grating in an optical reconstruction system. Although(XFH) and multiple-energy x-ray holograph§MEXH).?
Gabor’'s dream to directly image atoms using holographicAbout three years ago, stimulated by the advantages of
electron microscopy has never been realizbdcause the multiple-energy electron holographyand the promise of
quality of the best electron lenses is only about as good aXFH,® we started developing a new kind of internal source
that of a raindrop for visible lighi, Gabor’s suggestion pro- x-ray holography which uses bremsstrahlung photons created
duced the optical holography revolution with the advent ofinside the sampl& The primary motivation for this paper is
lasers to provide the necessary coherent monochromatic ete provide the theoretical foundation for experimental brems-
ternal reference waves. strahlung x-ray holographyBXH) starting from quantum
Ten years ago, Ske pointed out that the necessary co- electrodynamics. The bulk of this paper is devoted to BXH,
herent spherical reference wave could also be created Hyut we also show how the same quantum electrodynamic
generating the electron reference wave inside the safiple. foundation applies to XFH and MEXH.
this case, the spatial coherence comes from the small spatial Bremsstrahlung x-ray holography is very attractive for
extent of the internal electron source.”8e® internal source three reasonsl) Bremsstrahlung allows hard x rays to be
electron holography suggestion generated a flurry oproduced from lowZ atoms. High quality holograms require
activity,* and, in the past five years, Gabor's dream of di-the wavelength to be much smaller than the spacing between
rectly imaging atoms with electrons has been partially realthe atoms. The characteristic fluorescence energies of many
ized for atoms within the first few atomic layers of the sur-interesting and important lo& elements are too low to pro-
face of a crystal using photoelectrohdiuger electron§,  vide good images using XFHK2) Bremsstrahlung produces x
diffusely scattered low energy electrohand diffusely scat- rays with a wide spread in their energy and allows multiple
tered Kikuchi electron§.However, because electrons inter- energy holograms to be recorded simultaneously by energy
act very strongly with atoms, the scattered object waves aranalyzing the bremsstrahlung photons. To accurately recon-
not very good spherical waveghere is a strong angular struct a three-dimensional object in real space, we need in-
variation of the magnitude and the phase of the electronformation over a three-dimensional volume in reciprocal
atom scattering amplitugleand multiple scattering produces space. To overcome the problems in the internal source
“electron focusing” effects along the lines of atoms in the single-energy electron holographies, several multiple-energy
sample which are important. Consequently, these new elecrethods have been developéd.hese multiple-energy elec-

0163-1829/97/56)/239918)/$10.00 56 2399 © 1997 The American Physical Society



2400 GERALD A. MILLER AND LARRY B. SORENSEN 56

tron methods eliminate the twin images, greatly reduce thdetween the regions of high electron density in two adjacent
effects due to the strong angular variation of the magnitudetoms, and consequently classical electrodynamics predicts
and phase of the electron-atom scattering amplitude, and réhe right behavior. The reason for this comes from the un-

duce the noise in the reconstructions. The MEXH methodtertainty principle. The amount of off-shellness, or virtuality,

was developed in analogy to the multiple-energy electroryf photons of energl, and momenturk is measured by the
methods to provide higher quality holograms than the S',ngleEquantity kS—IZZEQz. If k0>|IZ|, the virtual photon is not
energy XEH .method.(s) The bremsstrah!ung production massless and its range@s * which is much smaller than the
cross section is extremely high. A conventional 400 W x-ray. ) ) = B )
source produces about ¥&hort wavelength bremsstrahlung INteratomic spacinga. If ko<|k|, Q* is negative and
photons per second intorsteradiand? If all of these pho-  €XP{|QIr) oscillates rapidly for ~a and any important con-
tons could be collected and energy analyzed, a very higffibutions are cancelled. . _
quality BXH could be generated with a tabletop apparatus in Thus our main result is that for real atoms in real solids,
a few hours. excited to emit bremsstrahlung or fluorescence x-ray radia-
The implementation of bremsstrahlung x-ray holographytion, classical electrodynamics works very well because there
raises a number of interesting theoretical questions. We firdé no significant overlap between the regions of high electron
recall that bremsstrahlung photons can have any energy frogiensity in the adjacent atoms. However, because the inter-
nearly zero to the energy of the incident electron, andmediate state photons and electrons in the internal source
the spectral intensity diverges at low energies:x-ray holographies are virtual, it is important to use quantum
| (w)dow~w~ ldw. The bremsstrahlung photons, which scat-electrodynamics to derive the equations necessary to analyze
ter in the target crystal to produce the object waves, ar¢he holograms. We provide that derivation for BXH, XFH,
intermediate or virtual particles. The momentum of each in-and MEXH.
termediate bremsstrahlung photon can take on any value; we The separated atom approximation that we use to show
must integrate over all virtual momenta in computing thethat the full quantum electrodynamic treatment reduces to
scattering amplitude. Of course, this must occur for any inthe classical electrodynamic expressions for real atoms in
termediate particle that produces an object wave, but the poseal solids, is formally analogous to the separated scatterer
sible problems are potentially more serious here for the virapproximation used in analyzing high energy hadron-nuclear
tual bremsstrahlung photons because of the broad nature etattering experiment$-2°
the bremsstrahlung spectrum. Almost all of our knowledge of the atomic scale structure
More generally we should ask: Are guantum mechanicabf bulk condensed matter has been determined from mea-
effects ever important in internal source x-ray holographysurements of the quantum mechanical interference patterns
Or does the simple wave picture always work? If a quantunthat arise from particle-crystal scattering. How do the new
mechanical approach is needed, what is the correct quanturiray holographies compare with crystallography, and what
mechanical description of internal source x-ray holographyare the other possibilities? There are four equivalence classes
When can multipath photon interference be treated by thef quantum mechanical interference patterns that have been
scalar wave equation approximation to Maxwell's equationaused to determine structurét) In crystallography, there is
instead of the full theory of quantum electrodynamics? Toan external source of particles which are sent into the crystal
answer these questions, we develop a quantum electrodin nearly plane wave states. In the usual kinematic scattering
namic treatment of the three internal source x-ray hologralimit, these particles coherently single scatter from many at-
phies, BXH, XFH, and MEXH, and compare it in detail with oms in the crystal. The interference between these many
the simple wave picture. single-scattering events produces the Bragg p&ak®) In
It is useful to provide this connection between the funda-nternal source holography, there is an internal source of par-
mental theoryQED) and these new holographies. Almost all ticles which leave the crystal in nearly spherical wave states.
of the work in this field has been based on the simple wav&hese particles coherently single scatter from the object at-
picture. For example, Barton’s original holographic inver-oms in the crystal. The interference between each of these
sion procedure for electrons is based on the Helmholtz- single-scattering events and the strong direct path reference
Kirchoff inversion procedure for classical scalar waves.beam produces the Gabor zone plates in the holog{@nin
However, in the nonrelativistic limit, Rous and Rubiihave  external source holography, there is a coherent external
recently shown how the Lippmann-Schwinger equation carsource of particles which is sent into the crystal in nearly
be used to provide solutions to the Sdafirger equation plane wave states. These particles coherently single scatter
which correctly describe the physics of the single-energyfrom the object atoms in the crystal. The interference be-
electron internal source holographies. tween each of these single-scattering events and the strong
For BXH in particular, classical electrodynamics will not reference beam produces the hologram. Unfortunately, the
produce the correct answer at high energies because the inecessary coherent hard x-ray sources are not yet avafiable
termediate photons and electrons are virtual: the square @nd when they become available they will probably destroy
their four-momenta may not be equal to the square of theithe sample in the process of making the hologfart) In
rest masseq?#m?. The physics can be divided into on-the- the Kichuchi and Kossel methods, there is an internal source
mass-shell amplitudegalled the “on-shell” or “real” pro-  of particles which leave the crystal in nearly spherical wave
cesses when p?=m?, and off-the-mass-shell amplitudes states. These particles coherently multiply scatter from many
(called “off-shell” or “virtual” processe§ when p?#m?. atoms in the crystal. The interference between these many
We show by explicit calculation that the virtual photons andmultiple-scattering events produces the Kichuchi and Kossel
virtual electrons do not propagate over the entire distancpatterns. These multiple-scattering patterns also contain use-
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ful holographiclike informatiorf? but this information is dif-
ferent than the single-scattering holograms.

The remainder of this paper is organized as follows. Sec- o
tion Il outlines the standard classical scalar wave derivation Object o
of the intensity of the holographic interference pattern for the Atem
interference between a spherical reference wave and Far Fiold
spherical object wave. Section Il is devoted to deriving an R Detector

expression for the corresponding cross section for the inten- R

sity of the holographic interference pattern for bremsstrah- gource

lung holography. Since this paper is concerned with the pos- Atom

sible effects of virtual photons, it is sufficient to consider the

process as being bremsstrahlung production by the source FIG. 1. The classical scalar wave description of internal source
atom followed by photon scattering by the object atom, lo-holography. The source atom produces the spherical reference wave
cated at a displacemernitfrom the source atom. We find that R which propagates directly to the detector, and which is scattered
we can simplify the expression for this cross section andy the object atom to produce the spherical object w@veThe
apply it to holography if the atoms can be treated as welinterference betweeR andO at the far field detector produces the
separated so that only real photons propagate from the sourg#ernal source hologram.

atom to the object atom. We then show for real atoms in real

crystals that the regions of high electron density are suffiyg the reference wave, and the wave corresponding to the

ciently well separated. Our separated atom approximation iémplitude produced by single photon-atom scattering plays
presented in Sec. IV. The bremsstrahlung energies for thg,e role of the object wave.

experiments we are considering are 4060 keV and at these pecayse the amplitude for photon-atom scattering is weak
energies, the x-ray-atom scattering cross section is domiyr hard x rays, the reference wave will be much stronger
nated by the Thompson process. So we study the photofan the object waves, and this strong reference wave limit is
virtuality effects for bremsstrahlung production followed by {he igeal holographic situation because the hologram is then
Thomson scattering ﬂrst.. Fo_r this case,_the corrections to oWjominated by the interference between the reference wave
separated atom approximation are defined and shown to bg,q the singly scattered object waves. In this limit, the inter-
entlrely negI|g|b.Ie in Sec. V. Near resonance, the anomalougrence between one object wave and another object wave,
scattering gmphtude; can become comparable to thg Thompyng the interference between the reference wave and the low
son scattering a_lmplltud_e, and these two amplitudes 'nterfer%rder(double, triple, ..) multiple scattering object waves
We consider this case in Sec. VI, where we use the numerig mych weaker than the interference between the reference
cal results of the previous sections to justify the immediatyaye and the single-scattering object waves. In nearly per-
use of the separated atom approximation. In XFH, the photofact crystals, the interference between the high order object
is produced by fluorescence radiation, where the exciteqayes can become comparable to the reference wave and is
atomic state is produced by electron or photon impact, angbsponsible for the Kossét-ray) and Kikuchi(electron pat-

the atom decays via photon emission. The emitted photofrns. However, these multiple scattering features are sharp

can be scattered by another atom to produce an object anl; angle and therefore can be easily removed from the holo-
plitude which will interfere with the direct reference ampli- gram.

tqde. This is dl'scussed in Sec. VII, where the necessary am- 1 develop the simple classical wave picture for internal

plitudes for this process are presented. In MEXH, a reakqrce ensemble x-ray holography, consider first just the two

photon is sent into the sample from outside. This photon hagioms shown in Fig. 1. The full internal source x-ray holo-

a direct path to the detector atom and a collection of singI%ram can be obtained from this two-atom case by summing

scattering paths to the detector atom via the object atomg,er all object atoms for each source atom, and by summing

which will interfere with the direct path. This is discussed in o\er all source atoms. Suppose the source atom at the origin

Sec. VIII. The final section is devoted to a brief summary gnjts radiation which is detected in the far field, and suppose

and discussion. also that prior to detection the radiation is scattered by a

second object atom located at positiah The direct and

single-scattering paths produce an interference pattern. When

the polarization is not important, this problem can be treated

as due to the interference between two scalar wave fields,
When an x-ray photon is created inside a solid and iswith the scalar field representing a componenEodr B.

detected outside, the quantum mechanical interference be- |n this approximation, the first atom emits a scalar spheri-

tween the different paths that the photon takes as it leaves the] reference wav® of the form

solid will produce a holographic image of the atoms around

the position where the photon is created. As we show below,

the probability distribution for the photon intensity is a Ga- elkr

bor hologram. In contrast to the usual external source x-ray R= r @

holography where the reference wave comes from outside

the sample, in internal source x-ray holography, the wave

corresponding to the direct amplitudee., the amplitude for and the second atom emits a scalar spherical object wave

the photon to leave the solid without any interactiosesrves O of the form

Il. CLASSICAL INTERNAL SOURCE ENSEMBLE X-RAY
HOLOGRAPHY
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ika ik|F—al
O:e—fa(a)e , @ (a) (b)
a |r—a

€,k €,k
where agairg is the position of the second atom. In the far
field, r>a, the composite amplitud® =R+ O takes the
form

ikr
L fa(0) -
M:e_ 1+e|ka£e_lk'a , (3) e~
r a

wheref,(6) is the standard atomic scattering amplitude for
an incident plane wave, and we have followed the tradition Pi P,
in this field of neglecting the higher-order spherical wave
corrections. FIG. 2. The uncrosse() and crossedb) Feynman diagrams
The far field intensity is given by the square of the com-for the reference amplitud® in bremsstrahlung x-ray holography
posite amplitudeM : (BXH). Thex represents the target atom that produces the brems-
strahlung photon. In the uncrossé@dossed diagram, the outgoing
I=M*M=R*R+R*O+RO*+0*0O. (4) photon is created aftébefore the virtual photon is destroyed. The
solid line represents the incident electron and the wiggly lines the
Holography records much more phase information than Crysphotons; this standard convention is used in all the Feynman dia-
tallography, but there is still a “holographic phase problem” grams in this paper.
present in the holographies that can only measure the inten- ) ] ]
sity (e.g., laser, electron, and x-ray holograpayd not the coherent scattering event at the object atoms. If the object
amplitude (e.g., acoustic and microwave holograph¥he atoms scatter incoherently, the interference in the final state
intensity holographies record both the information we wantWill not occur. _
about the object in thB* O term, and a copy of the complex We shall show how these features arise from quantum
conjugate of this information in thRO* term, which pro- ~ €lectrodynamics.
duces a nonexistent twin to the object during the reconstruc-
tion. Ill. BREMSSTRAHLUNG X-RAY HOLOGRAPHY (BXH)
The far field object plus twin holographic interference

. . In the bremsstrahlung process, an electron incident on a
cross termR* O+ RO* is proportional to gp

solid radiates a photon:e(p;)+solid—e’(ps)+ y(k)
. ) Lo +solid'. In this paper, we consider the case where the initial
Re fa(6)]cogka—k-a)—Im[f,(6)]sinka—k-&). (5)  and final electronic states of the atoms are the same, and

In this paper. we treat the case in which the source ator%/]vhere the solid is a collection of fixed atoms, i.e., we do not
IS paper, - - o consider the effects of thermal motion. The Feynman dia-
emits x rays with wavelength. Note that to obtain signifi-

cant holographic oscillations, it is important to make=a grams for bremsstrahlung holography are shown in Figs. 2

and that the best holograms will be produced whepa. and 3. The complete holographic amplitudi¢ is the sum of

Although all of the existing and proposed internal sourcethe reference wave amplitude, given by the crossed and
9 9 prop uncrossed Born bremsstrahlung terms shown in Fig. 2, and

holographic techniques actually depend on the multlpattghe object wave amplitud®, given by the crossed and un-

guantum mechanical m;erference of the particle emitted b)(:rossed Compton scattering terms shown in Fig. 3:
the sample, the essential features of the holograms can be

(and have been before this papebtained from the simple M=R+0. (6)
wave picture of the process outlined above.

There are two essential ingredients of atomic resolutiorfiere the QED referenc®, objectO, and hologramM am-
internal source holography1) There is a localized source Plitudes are analogous to the corresponding clas§ic#,
inside the sample. This localization provides the necessarg§ndM terms in Egs(1)—(3). The quantum mechanical in-
spatial coherence of the source. The particle can be localizé@rference betwee® and O required to produce the holo-
by being created inside the sample—this is the case for thgraphic interference pattet, requires coherent scattering
bremsstrahlung and fluorescence x-ray holographies d@f the reference wave by the object atom. This required co-
scribed in this paper. The particle can also be localized bjerent Compton scattering by the single object atoms is pro-
being ejected from a specific quantum state in the samp|e_\Lided by the recoiless Lamb-fésbauer effect, in which the
this is the case for photoelectron and Auger electron h0|ogentire crystal lattice takes up the recoil momentum due to the
raphy. In addition, the particle can be localized by an inco-Compton scattering. Consequently, the efficiency of this ho-
herent inelastic scattering event—this is the case for diffuséographic process depends on the size of the recoiless frac-
low energy electron diffractiofLEED) holography and dif-  tion.
fuse Kikuchi electron holography. The analogous incoherent Before starting, it is useful to sketch the notational con-
scattering localization is possible theoretically for photonsventions used in this paper. The various four-momentum
via thermal diffuse x-ray scattering and via Compton scattervectors are represented with italic typeface, ekgp; ,ps,
ing. (2) There is interference between the direct referencénd the three-vector spatial components are indicated with
wave and the singly scattered object waves. This requires italic typeface with explicit arrows, e.gk, p;, andp;. The
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€.k P €,k P bution to the atomic form factor, normalized so that
\ \ F(0)=1. This matrix element is proportional K;;(O,E).
The nuclear form factor is essentially unity for the kinematic
range of the current x-ray holography experiments. The de-
\k‘ + U S viation of the term[1—F(|g|)] from unity represents the
: screening effect of the atomic electrons.gi0, the atom
acts as a neutral object and there is no bremsstrahlung.
The only significant approximation made in obtaining Eq.
P, (8) is that the initial and final state electron-nuclear Coulomb
interactions have been neglected. The influence of these in-
teractions, which can increase the value of the computed
cross sections significantly, can be reasonably well approxi-
mated by multiplying the above amplitude by the product of
the continuum electronic wave functions evaluated at the
! \' nuclear center—this is the Elwert approximation of Ref. 26.

€k Pt €k Pt

e~ This is a well-motivated approximation classically because
the acceleration that leads to the bremsstrahlung takes place
X in the vicinity of the nucleus. Detailed numerical studies
have confirmed the qualitative accuracy of the Elwert ap-
proximation. Multiplying our amplitude by this factor does
Pi Pi not influence the propagation of the virtual photon between
atoms, which is our principle concern. Thus we shall ignore
FIG. 3. The four Feynman diagrams for the BXH object ampli- the initial and final state interactions here in our study of the
tude©. The object amplitude has four terms due to the crossed angotential off-shell effects.
uncrossed source terms, and the crossed and uncrossed Comptonit is convenient to define the expressions in the bracket as

scattering terms. The sum of the tibdiagrams in Fig. 2 interfere  ¢. B(k), so that the reference amp”tude can be rewritten as
with the sum of the foul® diagrams in this figure to produce the

bremsstrahlung hologram.

z

magnitudes of three-vectors are written explicitly, e|§|, R(k,q)=
Thus for the bremsstrahlung reference amplitude shown in |
Fig. 2, the conservation of energy and momentum is written

asp;+q=p;+k, wherew=k°, p’=E;, andp?=E;. Here
g is the four-momentum supplied by the targgt (0,9),
where the 0 arises from our condition that no atdmrsnu-

e,e’ R
e [1-F([d)]B (k) e". 9

As shown in Fig. 3, the virtual photork() is produced by
the source atom, propagates to the object atom, located at a
clei) be excited. Three-momentum conservation is ex %eparatiorf from the source, which scatters the virtual pho-
. presse : : : -
LT } i ) tonk’ so that the final photok is produced. The object atom
asq+pi:5pf+k. The notation and conventions of Bjorken gcattering is dominated by the Compton scattering of the
and Drelf® are used throughout the present work, and oulhaton by the atomic electrons. This is because the photon-
units are such that both andc are unity. - atom scattering is larger than the photon-nuclear scattering,
~ The cross section for the holographic interference pattery; the ratio of the proton mass to the electron mass for the
is related to the square of the holographic amplitddeby  Thompson term, or by the ratio of the squares of the atomic
o — and nuclear radii for the dipole terms. The virtual brems-
L 7.,“’|M| O(E,~m—w), (7) Strahlung matrix element is denoted & (k') and the
dQdQd|K| pi~ 2(2m)°® ’ Compton rescattering transition matrix €4 (e,k,k’). The
evaluation of the Feynman graphs shown in Fig. 3 uses stan-
dard technique® Here we also carry out the integration

. T ) 2 . over the time component &, which gives us & function
The quantlty|/\/l | is obtam_ed from| M| by_ squarng the settingk’°= w. Then we arrive at the expression for the ob-
magnitude ofR+ O, summing over the spins of the final ject amplitude:

electron, and averaging over the spins of the initial electron.
The reference amplitud® shown diagrammatically in
Fig. 2 is evaluated as

wherem is the mass of the electrof), represents the outgo-
ing angles of the photon and; those of the electronp().

B, (k')
(’):—Zze“ef C*(€,k,k") £
Ze,e? p| (CX >w2

] E'pf E.pi —|2’2+i6
R(k,q)=—> Uf((—. " 2p. )7’0
|G/? 2pi-k 2k x @ i(k=K")-F &k’ [1-F(q'D]
. £k N YOk P (2m)3 G'2+ie
2ps-k - 2pi-k )

where e?/4m= a, the proton charge is the negative of the whereq’ = p;—p;+k’. Note thatk’?= w?—k’2#0.
electron charge,= —e, andF(|q]) is the electronic contri- The bremsstrahlung matrix element is given by

; (10

[1-F(dD], ®
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B.(k")=uy Yog —kam et Ve g T —m

Yo( Ui,
(11

where standard spinor notation is used. Note that the Comp-

ton term(C#(e,k,k")) is the atomic expectation value of the
virtual-to-real Compton transition matrix which converts the
virtual photonk’ to a real one with four-momentum and
polarization K,¢€). Thus

CH(€e,k,K")=y*Se(Pi—K) £+ £x(Ps+ k) y*, (12

where Sc(P) is the relevant propagator for the bound elec
trons. For example, when the electrons are treated as free, t
Compton transition matrix element is given by

1
E+E

s 4 E_
Cf,l(e!k) Uf Pf+k_m

y7a
Y P—k—m 4

M] Ui ,
13
where the upper case spindds,U; represent the initial and

final states of the free electron, wif+ K'= Pf+ k.

But the atomic bound states are more interesting. We may

better understand the operator of Efj2) by noting that in

the relativistic theory, the origin of the Thompson term
comes from the terms involving the creation of virtual
electron-antielectron paif8.The resulting two-electron plus

antielectron states live only for a very short time, so that we
may ignore interactions with the other particles of the atom.
The remaining terms can be seen in the nonrelativistic limit

up to O(p?/m?) as arising from the two interactions of the
dipole operatof® Then, we may write the Compton transi-
tion matrix element as a sum of terms so that

(CH*(e,k k")) =(TH(e,k,k"))+(R*(ek,k")), (19

where the Thompson scattering is denoted’as,k,k’) and
the resonant scattering and other contributions are denoted
(R*(e,k,k")).

When the long wavelength approximation is valid, we
obtain

(il&-Dn)(n[D)|i)

LARRY B. SORENSEN

where the dipole operatd® is given by

(16)

z
5.3
i=1

ands, is the dlsplacement of thieh electron from the atomic

center. The vectob is simply the sum of electronic dipole
operators. The quantitids,, andI',, are the energy and the
width of the excited stat&. The result shown in Eq(15)
indicates that only the three- vectérpart of R* enters into

ﬁhe expression for the amplitude. This is because each atomic
photon emission and/or absorptlon is controlled byeal
operator. For unpolarized atom®, must be proportional to

€, so that it is convenient to define a strength function
S(w) such that

R=eS(w). 17)
We use this definition along with E@15) to obtain
S(0)= 2?3 [(ile-Bln)? -
n Ei+w—E,+(1/2)iT,
—1 18
TE e E (18)

As noted in the Introduction, we shall proceed by first
studying the effects of Thompson scattering by the object
atoms. An explicit evaluation yields

(0=~ e F(R-K)), 19

as

where for simplicity we take the scattering object atom to be
of the same type as the source atom which produced the
virtual photon. In this and the following two sections we

shall consider photons for which the Thompson term is

(RM(€,k,K"))=w? 22 E+tw_E,+(1/2)il, dominant. We shall return to the resonant corrections to the
Thompson term in Sec. V.
a2 (i|D,In)(n|&-Dli) We computd/\/ﬂ by squaringR+ O, keeping only the
E Suls Thompson scattering contributidrt* in O, by summing over
E,—w—E K ) ; . L2
n the final electron spin, and by averaging over the initial elec-
(15  tron spin. The result is
|
5 1 . zée® \? 8t R
[MP]=5 X | B*-eB el —[1-F(laD]| +-——[1-F(ld])]
StSi |l |l
d%k’ [1—F(| I)] - o FK=K']) =
X 2Re B* (k i(k=k") —T“ KB LK) 1. 20
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Here the term of ordeZ*e'®, which is much smaller than the lower-order terms, has been neglected.

The result given by Eq20), as specified by the matrix elements given by EG4) and(19), is our main result. It gives
the bremsstrahlung holography cross section when the object scattering is dominated by the Thompson term. We shall make
a further simplification to facilitate a first evaluation: we will keep only the numerically most significant terthamdB, i.e.,
the ones proportional t&- f; ande- f; . This leads to the standard classical expression for the bremsstrahlung cross®ection.
We have explicitly evaluated the neglected terms numerically and found that their neglect produces an approximately constant
10% reduction in the cross section over the kinematic region where the bremsstrahlung holography experiments will operate.
Our numerical results can be understood by noting ##a~i - ex k. This spin-dependent interaction is a magnetic effect
proportional toV X A, which therefore does not interfere with the terms we keep. Furthermore, the two spin-dependent terms
of Eq. (8) partially cancel and their sum is smaller than the leading term by dbdout

We carry out the average over electron initial spin, and the sum over final electron spin. The result for the bremsstrahlung
holography cross section is

_GD a0 _G B(E; —m— ) [ M =y [8E:Eq— 4p;- py + 4] (21)
dQQf||Z| |5|| 2 (2,”_)5 i 8m2 i=f i"Mf )
where
— [z€ N o Z%Pol-F(laD]
M= 2 (=R pi+RDI | [ V(l0E Vi) T === Rl (). (22

Here the quantity (k,F) is given by

[1-F(§'])] F(k—K'])

1G'|? 0?>—K'%+iel’

I a3k’ . NP
I( ,r)ze-V(k)fW%.vl(k')e—“ -k “( (23

where §'=p;—p;+k' and =p;—p;+k. The vectors must proceed by bremsstrahlung from the source atom fol-
\7(k) and\71(k’) are given by lowed by photon propagation along the directionfoand
Thompson scattering by the object atom. Thus the brems-

(k)= Pr P (24 strahlung makes a real photon with moment.es wf and
pi-k  pi-k’ energyw, and the Thompson scattering changes the direction
i i of « to k.
Vy(k')= Z?f i Zf)i . 25 In this case, the photon has four _momenturrﬁ'(wz:?) _
2ps-k'+k'e 2p;-k'—k and k- k=0. The propagating photon is on shell. This situ-

qa;tion is simple, but the full integral of E§23) is not. How-
- : s ver, we will evaluate this integral by developing expansions
hologram given by Eq(21) tagether with the definitions in which the leading term is correct in the limit thats very

ONEREDYEEGS (2225 NISRENCOMEICIE solutlon_to e large. We shall keep the leading term and the most important
SHEMESITEIVAL LUeHoe]elel 0 [geldEli, Bl (SmETS (e beorrections. We call this approach the separated atom ap-

done is to carefully analyze these equations to see how th imation. | . hi lackd -
classical holography equations emerge in the classical Iimil?rox'mat'on' iRl cHCE N SIERONNISITIED de gy « in
and to see how large the quantum effects are, and when th(%(?rtam terms in the integrand. For example, we shall show

are important. That is the content of the next three sectiondelow that replacing/(k’) by V(x) and g’ by p¢—;+ «
are excellent approximations.

We may use the uncertainty principle to better understand
why the propagating photon must be real for infinite values
The goal of the bremsstrahlung holography experiments isf r. Our virtual photons have energy, but the magnitude
to determine precise information about the location of theof the three-momentum varies from 0 to infinity in the inte-

object atoms, which is represented in E@&1)—(25) by the  gration. Let us defin@?= w?— |k’|? to provide a measure of
vector . The standard holography expressions involve arthe violation of energy conservation required to make the
interference term of the general forge'®'e *'7/r where virtual photon. This is simply the square of the energy-
B is a known function. A quick look at Eq$22) and(23) momentum four vector, which vanishes for real photons. If
could lead one to dismay. How could that integral ever haveQ?<0 the wave is a decaying exponential of the form
the simple form required for holographic investigations? Wee™"Q"l/r which has a small value. The interpretation of this
indicate a solution by considering the situation when the twoYukawa form is that the photon lives for a timiéQ, so that
atoms are very far apart, i.e., in the limit wherapproaches its maximum range igc/Q. If Q?>>0, the wave is of the
infinity. Here our intuition provides a guide: the processform e#Q"/r. The effect of this term is very small because of

The cross section for the intensity of a bremsstrahlun

IV. SEPARATED ATOM APPROXIMATION
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Cu electron density .

o (s)
|

Real (J,,)

oz Lol b b
0 0.5 1 15 2 2.5
s (Bohr radii)

cos(8)

FIG. 4. The electron densitp(s) for isolated copper atoms
(dashed lingand for copper atoms in crystalline copgsolid line)
calculated using theerr computer codgRef. 30. Heres is the
distance from the center of the atom.

FIG. 5. Comparison of the real part of the on-shell separated
atom approximatiod, (solid line) given by Eq.(27) with the real
part of the classical spherical wave holography functidashed
line) given by Eq.(30). The results in Figs. 5-9 are shown for
crystalline copper with representative experimental kinematics: the
incident electron energy is 60 keV and the outgoing photon energy

is 20 keV. Here co#)=k-f.

the oscillations of the integrand in the integral owEk’.
Thus, the net result is that only the real photons vtk 0
reach the object atom.

Are the atoms in a real solid sufficiently separated so that, . e . o
all the virtual photon effects are gone bef)(gre tlile bremsstrafégam’ ﬂle subscript “on™ is to_ remind us that setting
lung photon reaches the nearest atoms? We argue that tRgual tox causes the propagating photon to be on shell. Its
answer is yes, at least for most solids at typical experimentafirtuality has decayed by the time it reaches the near-
bremsstrahlung holography energies, by considering the sp8€ighbor atoms, and the square of its four momentum has
cific example of crystalline copper. In crystalline copper thevanished. The next sectid$ec. ) is devoted to the dem-
atoms are separated by a distariRg~2.5561 A<4.83, onstration that the on-shél,(k,F) given by Eq.(26) is an

wherea, is the Bohr radius~0.529 A. Where are the elec- excellent approximation to the ful(lZ,F) given by Eqg.(23).
trons in each atom? The electron density for isolated copper The first step is to understand the integdg). We can

atoms and for crystalline copper calculated using REEF  gain some insight by converting the integral over the mo-
computer cod® is shown in Fig. 4. Note that this density is mentum into one involving positions. We use

sharply peaked at small values &fince most of the elec-
trons are within 1 A of the nuclear center of the atom, and
that the electron densities for isolated atoms and for atoms
fnn;gﬁdsﬁilz trg?jiizhgf ?;Z \é?srﬁzggaéérsfg;ggfr%rf SrOOtso that the on-shell,, integral given in Eq(27) simplifies to
the closest separatianbetween the copper atoms is about 5

times the typical value of the distanséetween an electron JOH(E'F)
and the nucleus. At the very least, it is reasonable to expect

that the separated atom approximation is a good startin

F(||Z—|Z'|)zf d3sp(s)e1(k-K)-s, (28)

eiw\§+r|

e—ilZ»(§+r‘)_ (29)

L Jd3 (s)
- Sp(S) —=
am) =P g

f r>s for the important regions op(s), we may replace

point. olar i - fof AioF- .
Our procedure is to examine a set of approximations t& **1/|s+F| by e'“"e!“"%/r. This gives
the full results forl (k,F) given by Eq.(23). We will define . 1 eer .
the on-shell, separated atom approximation as the result of lim Jon(k,F)=— ETef'k‘rF(“(—KD, (30

setting kK'=k in V4(k') and ing’. Then the on-shell ap-
proximation | ,(k,F) to the full on- and off-shell integral Which has the usual classical holographic form. The spheri-

I(IZ F) is given by cal Green’s functiore'®’/r corresponds to the form of the
' wave at infinity. This form arises from the pole in the inte-
. [1=F(p—pi+<DI1-F(|d])] gral for Jon at[K'|[=w. S
lon(k,F) = 16— b+ %2 To check the asymptotic approximation given in E20)
Pr=PiTK we numerically compared the full,, given by Eq.(29) with
X e V(K) 2 V(k) I (K. 7). 26 its approximation given by Eq30). The results are shown in
& V(K& V() Jor(kr) (26) Fig. 5. Note that the approximation is excellent except when
where K|F. Even then, the full theory and the approximation pro-
3, . duce very similar holographic interference patterns; the
3ok F):f (k=K F(lk—Kk'[) 7 asymptotic approximation produces a pattern about 10%
o (2m)° w?—K'2+ie smaller than the full theory whekl|F. This agreement be-
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tween the full quantum electrodynamic calculation and the F(|IZ— IZ’|)~F(q )+ (K —R)-V F(qy) (34)
simple classical holography equations shows that brems- ! 4 L

strahlung holography is possible: the reduction € does whereq,=|k— «|. We use Eq(34) in the integral(27) and
not significantlz change the oscillatory form with its strong note that thek’ appearing in the numerator of the integral
dependence oR- . (26) can be replaced by a gradient 6nThus we find

There is no need to use the asymptotic approximation in
numerical work. We may use the correct valueJgf and
maintain the explicit holographic form. This involves ex-
panding the form factor in terms of Legendre polynomials .

ior

Jo(kiF)~— 72— ——e " 'F(q))+8Jon, (35

I h

P (k-K): wit

8o k,F)=—e " Vq F(a)-Vor(kP),  (36)

F(k=KD=2 Fi(erP(k-k), BD  here

wherew=|k|. Combining the partial wave expansion for the U (Ef)= v, RN F(lk—K')
atomic form factor given by Eq31) with the full expression on(K,F)= K (2m)%" W’ —K'2+iel’
for J,, given by Eq.(27) yields the partial wave expression (37)
for Jon

One may use the Legendre partial wave expansion of Eq.
(32) above to obtain a more detailed expression for

Vor(K,F). But the main point is that the long distance behav-

" _ _ __ior of the integral is that o'“". Since (~iV,—«)e'“ =0,
whereh;"’(«wr) are the outgoing spherical Bessel functions.y,e correction to the separated atom approximation must
All that is required for this to hold is thatbe bigger thanthe .56 an extra factor of orderdf ~1/25. We shall use ex-

_ma>r<]im_um Va'?‘;;ﬁ g:e.,cirfazi.g(s'&ﬁ\ focri chppi)or(]:currinE pansions similar to that of Eq434) to systematically under-
in the integral(29). Sincer =2. and Fig. 4 shows that stand the short distance terms. The integfgi(k,F) will

p(s) is less than 103 of its maximum value fos=0.5 A, . )
this condition is met. We may also understand the relatiory PP Ea" again. Furthermore, we shall often employ the tech

between this expression and its limiting form shown in Eq hique of writing a complete expression as its on-shell ap-
(30). The use of the asymptotic form of the outgoing spheri-?roxlmatlon plus a term which is proportional to

cal Bessel functions: —iV,—«) and vanishes in the asymptotic limit given by
Eg. (30).

Jon(lz,r*):iwgiLFL(wr)h{”(wr)PL(R.f), (32)

ix
lim h{Y(x)=(—i = (33 V. SHORT RANGE TERMS
X— 0
. ] ) In the previous section we showed how keeping the ef-
leads immediately to the result shown in E§0). The cor- fects of the pole atm:w led to the term with the long

rections to this asymptotic form are thus of ordex fimes di ; ; -
> : istance propagation. Here we show that this pole dominates
the original result. Thus we see that the expected first cor- propag P

rection to Eq.(30) is of the order of lbr~1/25 for =20 the complete expression given by E@3). The vectork’

keV. appears in three places in this integral[i—F(|G'|)], in
Equation(32) allows us to understand why the difference 1/d'|?, and inVy(k’). We will denote these terms as the

between the asymptotic approximation given by &f) and  screening correctlon,_the Coulomb photon propagation, and

the exact result given by E¢32) is largest fork-F=1. The the electron propagation. We shall study each one separately.

termsF (wr)h, (wr) monotonically approach zero &sin-
creases. The functioF?L(IZ- r=1)=1 for all L, so that the

terms with largeL [these are the terms for which the ap-  Keeping thek’ in the screening term leads to the integral,
proximation generated by E¢BJ) is less accuraieadd con- ls:

structively. This can also be seé@without using the partial

A. Screening correction

wave expansionby examining the integrand of Eq9). If . a3k - . F(|k—K'])

kRep=1 (i s S+7|—K-§ i l4(k,F)= e I 1-F(a D] =5
k-f=1 (i.e., whenk|r), the termw|S+|—k-§ is greatly — 's\'¢ (2m)3 q w?—K'%+ie)
reduced so that the contributions of the larger values of s are (39)
less inhibited by the oscillating exponential than for other

values ofk-F. Recall thatq’ =p;—p;+k’. Pole dominance of the integral

The partial wave expressid32) systematically gives all would allow us to replace thie'’ appearing in§’ by «. Thus
of the corrections to the classical holographic form given bythe integral may be approximated by using
Eq. (30). However, it is useful to provide another approxi-
mation which shows us why the relevant integrals are domi- F(da' ) =F[|ps— P+ k+ (K’ — ©)|]

nated by terms in whick’ = «. The idea is to approximate L - > - o
F(Jk—K']) using ~F(|pi—pi+ k) + (k' —«)- Vg, F(az), (39
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FIG. 6. The small effects of photon virtuality on the screening

correction given by the ratio of the second to the first term in Eq.

(40). The ratio R&l ;/Re{[ 1—F(q,) 1o is plotted to illustrate the

size of these corrections for two typical experimental values of the
momentum transfer, namely 12.2 keV and 93.5 keV. Here the mo-

mentum transferA=p,—; and the angled’ is specified by
cos@')=A-f.

whereq,=|p;— P + |. Using this in Eq.(38) leads to the
appearance dt’ in the numerator of the integral, which can
again be replaced by a gradient BnThe result is

lo(K,F)=~[1—F () 1Jon(K,F) + 81 (K, ) (40)

with

Sly(K.P)=—e KV, F(dp) VoukF). (4]

The leading long distance behavior of the integral of Eq
(37) required to evaluate\?On is that of e€“. But
(—iV,—«)e'“"=0. Furthermore,V, F(d,) is of order
(n/g,)F(Qgy), with n~4. Thus, thedl S(IZ,F) screening cor-
rection term of Eq(40) provides a correction which has an
extra factor ofF(qg,)/q,r compared to the leading term.
However,F(q,) is very small, 1% at most, for the kinemat-
ics of this experiment. For typical kinematigs~ 100 keV
so (n/g,r)F(q,)~(4/125)(1/100%=3%x10 4. The correc-
tion to the separated atom approximation due to the scree

ing term is completely negligible here. This is shown in Fig.
6.

B. Coulomb photon propagation

If we keep thek’ in the Coulomb photon propagator
1/G'|>, we need to evaluate the Coulomb integral

ICoul(lzi IT)):

(42

| coul K, )
1 F(lk—K'])
f—ﬁi+|2'|2 w2_|2’2+i€

>

p

. 1
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In this case, there are two sets of poles. One is the usual one
at|k’|=w, but there is also a set of poles off the real giis
the complex |k'| plang corresponding to the zeros of

|ps— P +k'|2. Itis desirable to handle these pole terms sepa-
rately, so we use the identity

11 (1 1] 1 43
AB |ATBlATE 43
in the form
1 1
BB +K'|? 0?—K'?+ie
1 1
= — - =+ = —
wz_k,2+|6 |pf_ﬁi+k,|2
1
X (44)

w2+ (Bi—Pr)?+2K" - (Bi—Pi)

The first term has the pole |’ | = » which is responsible
for the long distance photon propagation. The second term

has the above-mentioned poles [&f| off the real axis.
The vanishing of the denominatorw?+ (p;— ps)?

+2K’-(p;—p;) occurs only when the two terms in the
bracket cancel and causes no mathematical difficulty. The
first term of Eq. (44 can be approximated by using

k'=x+ (k' — ) and expanding so that

1 1
w?—K'2+ie w?+(Pi—Pr)2+2K - (Br—p)

1

_ 2K = K)- (B —Py)
w?—K'2+ie (Ps—pi+ )2

(Ps—Pi+x)?
(45)

The first part of Eq.(45) corresponds to the separated
atom approximation. The next term involves ¢ «) which
yields the integravon(IZ,F) of Eq. (37). The specific correc-

tion to J,, is denoted asJS°" which is obtained by keeping

r&he second term of Ed45) in the |, integral given by Eq.

38) so that

835Uk, F)

a3k’ - o,
=2 @Twe“”“[(

Thek’ — k term of Eq.(46) again leads to an extra factor of
1/g,r, as compared to the leading term. The expected small
size of this correction is confirmed by numerical evaluation.
Indeed the second term of E@5) is negligible except for
the angles for which the leading term vanishes. See Fig. 7,

which shows the relative sizes 8§k, 7)/(p;— p;+ )2 and
the correction to it due téJS(K,F)/(P;— P+ ).
What about the second term of E¢4)? This is given by

K= &) - (=P
w?—K'2+ie

] . (46
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— 7 whereP2=(p;— p;)2+ 2« (Bs— ;). This Fourier transform

- falls off very rapidly withr, i.e., as exp{Pr)/r. For typical
Coulomb, A=12 keV ] values of P of about 100 kew50 A% we will have

1 Pr~25, where a is the separati¢n2.56 A). The exponen-

tial damping factor destroys this second term. This intuitive
] conclusion is also confirmed by numerical evaluation, but the
- strong exponential damping inherent in this term caused the
effects of this correction to be too small to be plotted.

0.0004 —
0.0002 —
0.0000

—0.0002 - .
i C. Electron propagation

—0.0004 |- B The full expression for the Feynman graphs in Fig. 2 al-
T T lows a new type of term, one in which the electron propa-

0.8 0.55 05 0.45 0.4 gates over the distanae The mathematical origins of this
cos(0) effect are in the poles of the electron propagator shown in
FIG. 7. The small effects of virtual photon propagation on theEq' (25 5ilien arse Vla,ghe appearance i t.he ipur-
Coulomb correction. The real part of the on-shell Coulomb correc-mr:)mentum of the Vlrtuarl]k L In those de.n(.)mmfators'h
tion S%°(5,— B, + %) (dashed link given by Eq.(46) is com- There are two terms in that equation, one arising from the

pared with the real part of the full on-shell separated atom approxiyncroSsed grapfFig. 2a)] and the other from the crossed

mation Jou/(§—Fi+#)? (solid ling given by Eq.(27). Here OrePniFig. Ab)l. We shall study these terms in sequence,
A=12 keV, p; -7 =0.5, andp;- p, =0.5. using our standard technique of writikg= « + (k" — «) and
treating the second term as an expansion parameter—
whenever possible without destroying the correct analytic
structure.

1
|Bs—pi+K'|2

1
w2+ (P;—Pr)2+ 2K - (B — ;)

1. Uncrossed term
Itis necessary to treat the -k’ terms correctly, butthe term  Suppose we keep the full uncrossed term. This means that
k’-(ps—pi) may be evaluated by usig=«+(k’—«) and  we must evaluate the integra](K,):
treating the difference term as a perturbatiorkin- x. Thus . o
] R*_f d3k’ erikkOT 1 F(k=K]
1 B 1 1(kin)= (2m)° 2ps-k' +k'?+ie k'’ +ie y2—RK'2+je
B—Bi+K'|* (Bi—P)>+2x (B—p)+K K (49
T P The product of propagators can be written
2(K' = &) (By— ) P Propag

[(Br—Bi)?+ 2k (Bs— B + K -K']* 1 1
(47) 2pf'k/+k/2 k'?+ie

1 1 1
k’2+i€ pr'k,+k,2 pr'k,‘
(50)
If we treat this as a function dk’|, the poles in the exact The 1/k’'2+]e) is the photon propagator and we denote its
expression and in its apprommaﬂon given by the first termontribution as the photon propagation term: similarly, the
appear at the same positions. The second term can be thouglicond part is the electron propagation term. The last factor
of as correcting the value of the residue at the pole. Furtherll(zpf, k') vanishes only when the term in the bracket van-

more, it vanishes for well-separated atoms. Thus neglectinghes and so causes no mathematical difficulty. We may then
the second term is a good approximation. We use S|m|la§tudy two separate integrals

logic to write
. 31(k, ) =Ky (K, F) +Ka(K, ), (51)
Y A2 Ao A = where
0+ (P —Pp)“+ 2K - (Pr— ) o
. dk’ e kKD T 1 F(Jk—K'])
1 Ka(k,F)= 3 7 2 = )
~ 5 o o (48) (2m)° 2ps-k’ K'tie p2—K'2+ie
o+ (P —Pr)+ 2k (P~ Pi)
(52
We use the first terms of Eq§47) and (48) to estimate and
the second term of E44). We immediately expect that this L
second term is completely negligible because it has the form L d3k’ e TikkDT
of the Fourier transform of Ka(k,M)=~— 2m)° 2p; K +K 21 ie
1 1 F(k—K])

—, ; = . 53
K -k'+P2 2pi-K w2—K'2+j¢ ®3
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2ps-k" + K'?+ie=(ps+k’)? —M?+ie=(Ei+ w)?2 —m?
—(Bs+K')- (B+K')+ie. We write this in terms of a four-
vector W=(E¢+w,p;+k’) as sk’ +k'2+ie=W?
—m?+ie. The zero in this term is a pole in the integrand
representing the long distance propagation of the electron of
four-momentumw,,,= (E; + w,|ps+K|f). We use the same
pole dominance idea that we used for the photon propagation
terms. In this case, the four-vectdV appears instead

of the four-vectork. Then we handle the termp2-k’
=2p;-W—2m? by using

0.005

0.000

1 B 1 N 1
pf'W_ m2 pf'Won_ m2 pf'Won_ m2

—0.005

cos(8)

FIG. 8. The small effects of virtual electron propagation in the X ps (Won— W)M—_mz- (59
uncrossed graph in Fig. 2. The real part of the uncrossed correction f
8Jon” (dashed linggiven by Eq.(57) is compared with the real part  This allows us to derive the analogous differential equa-
of the on-shell separated atom approximatigp (solid line) given tion for K,:

by Eq.(27). Herek-p;=0.5 andp;-#=0.5.

. Kon(K,F) 1
We work first withK,. The manipulations are simplified by Ka(k,r)= 2p O\r;v “m2 T 2p;- W2
using f on f on
1 1 1 1 X 20 {W V»+|Z+ K,(k,F), (60)
’ Ps- on | T Pt 2(K,I),
- k) ,
pr‘k/ pr K +2pf szf (K k )prk/ ’ (54)
. where
where the four-vectok=(w, ). Using this relation in Eq. 5
(52) enables us to derive a differential equation Kor: . ki 1
Kon(k,F)=— (277)3e 2p; K 1k'2
Kq(K,F) JnlkD) 1 2p;-| x v K|K4(K,P) — K
)= - k——— ). —K'
! 2pik 2ppk i ! x—F(“i b (61)
(55) w’—k'?+ie

We see that the first term is the separated atom approximg&quation(60) is equivalent to the full expression fi, and
tion for this particular term. The quantifyc+iV,—k] van-  also shows how we can make a first approximatiorkigby

ishes when acting o' Tei“'/r, so that the second term is substitutingK o,(K,F)/(2p¢- Wen—m?) for K, on the right-

a correction. The effect of this term can be estimated byhand side. The technique is the same as in previous sections.

replacingK, on the right-hand side b¥,,/(2p;- ). Thus We immediately see that the second term vanishes in the
separated atom approximation.

(2ps- K) K1 (K, F) =~ Jon(K,F) + 83U K, F) (56) We may evaluat& ,, in the separated atom approxima-
tion, because this is essentially the same integrd,asThe
separated atom approximation worked except whemas

small. Here the quantithk— | P;+k|f| plays the same role as
g;- The result is

with
SIUNC K, F)=—2p;- [k +1V,— K]Jon(K,F). (57)

A brief calculation shows that once again the correction is o 1
proportional to the vector integrad,(k,F) of Eq. (37), and Kon(k.F)=e'k're'p"r( - —)
is down by about 1ér compared to the first term. Explicit

numerical evaluation confirms this estimate, the correction i2E ot 02 p2r /1T | = >,

L - - X ' VeEs PH'E(|k+ ps— VE;w + 0+ p5T|).
term JU"" is indeed negligible, as shown in Fig. 8. For gen- (kP 1ot o™+ pif])
eral purposes, it is useful to note that E65) has the formal (62
solution

SinceE¢= Jym?+ pf2 is very largeF is evaluated with a large

1 argument, and this Kills thi, term.

Ky(K,7)= ——————J (k). (58 The size of the quantitK, is controlled byK,, and by
2ps- k+2P;- (k—Kk+iV,) the denominator
This formal solution gives us a controlled way to study some D=2p;- Wyy— m2=E((E+ ) — (P¢- )| s + IZ|. (63)

of the corrections to the separated atom approximation.
The K, term given by Eq.(53) represents new physics Numerical evaluation shows th#t,<K;. If §;=0, K, is
occurring in this two-atom process. To see this, recall thasmall because the atomic form factor is evaluated at a large


Larry Sorensen
Highlight


56 QUANTUM ELECTRODYNAMICS OF THE INTERNAL . .. 2411

argument. Whenp;| takes on a typical experimental value, ————
the energy denominator is very large. The net result is that
K, is ignorable.

However wher ;| is very much larger than the electron
mass,D approaches 0 and, can become large. The brems-
strahlung from a collection of atoms would then have a large
contribution from the electron propagation term. This small
value ofD is a necessary condition for the occurrence of the
Landau-Pomeranchuk-MigddLPM) effecf! in which the
long time scale of electron propagation allows a coherent
effect which reduces the radiation. However, we are con-
cerned with the low energy limit in which the electron mo-
mentum is much less than its mass. So, for us, the electron ™ [ ¢ 1]
propagation term is negligible. ! 0.9 0.8 0.7 06

0.005 — -

0.000

2. Crossed term FIG. 9. The small effects of virtual electron propagation in the
ossed graph in Fig. 2. The real part of the crossed correction
", (dashed linggiven by Eq.(72) is compared with the real part
of the on-shell separated atom approximatigp (solid line) given

by Eq.(27). Herep;-#=0.5.

Suppose we keep the full crossed term. This means thagf
we must evaluate the mtegrai(k r):

L emitk=k)- 1 F(k=K'))

Jz(k,f)Ef 2m)3 2p K —K2TiekZtie o2k 24ie Once again the first term is the separated atom approxi-

! @ (664) mation for this particular term. This dominatks. For gen-

eral purposes, it is useful to note that E6Q) has the formal
The product of propagators can be written solution
1
1 1 1 1 1 P P — e
. _ Ka(K,7)= —__Jo(KP). (70
2p K K7 Wi [K7+ie  2p K —K2[2p K 2p;- k+2p;- (k—K+iV,)
(65

Again, this formal solution gives us a controlled way to

. ) ._study the corrections to the separated atom approximation.
Again we denote the first term as the photon propagatioRye \;se

term and the second term as the electron propagation term.
The last factorl/(2p;- k') vanishes only when the term in 20 kYK (K. = (K.F)+ SI(K.F 71
the bracket vanishes, so this zero residue pole makes no con- (2pi- k)Ks(k 1) =Jon( ki) or(K:) 7D
tribution to the integrald,(k,F). We may then study two Wwith
separate integrals R L .

835K, =—2p; [k +iV, —K]Jon(k, 7). (72)

(ki) =Ka(k,) + Ka(k,), (66) e find the crossterm correction effects duesdy, are very
where small, as illustrated in Fig. 9.
The termK, of Eq. (68) represents new physics occurring
. i .. in this two-atom process. We use the same techniques we
KB = d*k e kT F(lk=K') used fork,. There is a pole in the integrand representing the
a(k,F)= (2m)° 2p;-k’ K'%+i€ 2—k'2+ie long distance propagation of the electron of four-momentum
(67)  Xon=(Ei—w,|p;—K|f). This allows us to derive the differ-
ential equation
and
N L Lon(K,F) 1
K IZ i e ek 1 F(“Z_R,l) K4(k’r)_2pi'xon+mz_Zpi'xon_mz
alen)= (2 )3 20K K7+ 20K W RZtie :
(68) xzrsi-[ion— i—'+|2+ B | |Ka(k,F), (73
It is clear that we can handl&s using the same tech- where
nigues that we used fd€,. We derive the following differ-
ential equation foiK: Rk 1
Lon(k r E f i( ) 7 12
(2) 2p;-k’'—k
Ks(K,F) Joker) 1 2p;-| & v K|K3(k,F) F(lk—K'|)
yr = - it K——— ,r . —k’
8 2pi-k 2pi-k Pi i 8 X ( (74

(69) w?—K'2+ie
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Note the appearance of them? term in the denominator of gng (22). The full on- and off-shell integral(k,f) of Eq.
the first term ofK,. This renders the energy denominator (23) is very well approximated by the on-shell integral

very large, it never vanishes even for infinitely lar§e. | _(k ) of Eq. (26).
Careful numerical evaluation leads to negligibly small results Furthermorex ,x“=0 so that we may perform the sum
o
for K4. These results are too small to be plotted. over the polarization vectois[see Ref. 25, Eq(7.61)] with
the results

D. Summary of bremsstrahlung cross section

. . 2
with Thompson scattering

m2

A A3 2ps- P m
2 VeV = 5T 5
The basic expression for the bremsstrahlung holography € Pe-kpi-k (pr-k)® (pi-

cross section where the object atom scattering can be de- (75)
scribed by the Thompson amplitude is given by E@) and
|
S e V(ke V)= P PP m” m” . (76)
€ Pr-Kpi-k  pro&pi-k pe-kpeex o pikpi-k
The net result is that
zet =V 2psep m? m?
M|?= 1-F(|g;—pi+k - -
z%° [1-F(|p—pi+«])] 2 - Pt Pi Pt - Pi m? m?
+ 1-F(|g = —Rel (K, F + - - .
|q|2[ (Iah] |Bs— Bi + «|? m ort k) Pi-Kpi-x Pr-kPi-K  Ppekpe-x pi-kp-x
(77)

The factors in the square brackets account for the peaking of the bremsstrahlung radiation intensity which occurs in the
direction of the initial electron velocity. This feature represents the influence of the vector nature of the photon and is
significantly different than the simple classical result from scalar electrodynamics.

The polarization dependent cross section is obtained simply frorf22)y.by replacing the terr(k, ) with I on Of EQ.(26).
That is, we find

ze? I S
|q|2[1—F(|pf—pi+k|)] [&- V(K& V(k)]

Z%° 2[1—F(d))]
g m

|M(e)]?= Rl (K, ). (78)

VI. BREMSSTRAHLUNG X-RAY HOLOGRAPHY (BXH) INCLUDING RESONANT SCATTERING

We now return to the case where the scattering of the bremsstrahlung photon by the object atoms includes the resonance
correction terms given by Egél5), (17), and(18). We simply use those equations in the expression for the amplitude given
by Eg. (10). The total Thompson plus resonant hologram amplitdde,  is the sum of the Born approximation reference
termR and the Thompson plus resonant object amplit@deCalculating this amplitude and squaring leads to the resonance
correction| Mg|? to the nonresonant Thompson squared matrix elefmetit with

Z%e[1-F(ldD]
lal®

e [L=F(d'D] F(lk=K'])

SMgl*=+ =
| R| |q>r|2 w2_k72+i6

. dk’ . p
S(w)zRee-V(k)f(zT)ge-vl(k')e i( . (19

whereS(w) is given by Eq.(18). If the resonant scattering and the Thompson scattering terms are of comparable strength, the
full square of the resonant and nonresonant hologram amplitude is the sum of the terms given (GY)Earsd (79):

|MT+R|2=|M|2+|6MR|2- (80)

The integral oved3k’ is the same as that evaluated in the previous sections. The essential result is that the integral can be

evaluated by removing the expressidp(k’)[1—F(|G’|)1/|G’|? and evaluating it fok’ = «. Recall thatc=(w,wf). In that
case,

2,611 =1 _ 2 _ R -
Ze’[1 F(|q|)] S(w)ZRe]m(lZ,F)%-V(k)%-\?(K)[l F(|pf p|+K|)].

|5MR|2=+ N R R >
|6l |B¢— By + |

(81)
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As explained above, the diagrams with propagating electrons are also potentially troublesome—at high energies these effects
produce the interesting LPM effects. Here the off-shell electron effects are governed by known atomic wave functions which
go into computing the functio®(w).

The sum over the polarization vectors of the photon leads to the expression

22 1-F(d)) _[1=F(p=Bi+«DI[ pi-p P m? m
S oM+ [ ! <] ]S(w)ZRe]m(k [1-F(|p;— |OL2 DI| pepi L PP
€ ld] |Ps— i + «| Pi-kpi-x  Pikpi-K  pi-kprk pi-kpi-x
(82
|
VII. X-RAY FLUORESCENCE HOLOGRAPHY (XFH) ionization, the incoming electron is on shell and the ioniza-

tion occurs via the virtual photon exchange, but the potential
Coff-shell photon effects are exactly the same as the brems-
strahlung case we have already analyzed in detail. For the
relatively low energies used in the current XFH experiments,
these effects are completely negligible.

Second, consider the intermediate states. What are the
ossible off-shell electron effects? The electron promoted
fito the continuum is detectable and is therefore on shell.
The virtuality of the continuum electron enters only if there
‘is another final state interaction; such effects are of higher
order in @ and are neglected here. Thus the only possible
off-shell electron effects come from the virtual intermediate
state electron in the state. But this is governed by well-

own atomic wave functions.

We now briefly consider the physics of x-ray fluorescence
holography(XFH). In this case, an atom in the sample is
excited from its ground state into an excited state by an in-
coming photon or an incoming electron. After the ionization,
the excited atom decays and we must consider the interfer-
ence effects for the outgoing fluorescence photon via th
direct path to the detector and via the single-scattering pat
to the detector.

The Feynman diagrams for XFH are shown in Fig. 10
Suppose the incident photdfrig. 10a)]—or the incident
electron [Fig. 10b)]—interacts with an atom, knocking
an s-shell electron into a continuum wave functian A
p-shell electron can spontaneously decay tostlstate, emit-

ting a fluorescence photon with the characteristic energies o For the characteristic radiation used in XFH, the long

the atom w=E,—E;, and with the reference amplitude wavelength approximation holds and the radiation is domi-

Rpsitc—iy (K. &) for photostimulated fluorescence, or with the nated by the electric dipole process. This predominantly di-

reference amplltudézesf(c_,,)(k €) for electron stimulated pole character, combined with the fact that the initial and

fluorescence. final electron is on shell, indicates immediately that the sepa-

First, consider the ionization process. For photoionizationrated atom approximation will be extremely close to the ex-

the incoming photon is real or on shell. For electron inducedact quantum electrodynamic solution. Thus the holographic
reference amplitude takes the simple form

(a) . e Ropsic--i)(K. &) = o Tpsf K ) (83)
P P for photoionization, and
c c o o
s + S Res(c—»i)(ka €)= wTe(K,€) (84)
for electron ionization, where th&,(K,&) and Tes(K,&)
factors account for the remainder of the atomic matrix ele-
ment.
(b) The holographic object amplitude contribution to the total
0 6k o &k amplitude occurs because the photon is scattered coherently
f P f p by the object atoms. When the Thompson rescattering effects
c c dominate, the on-shell approximations for the FXH holo-
graphic interference terms are given by the expressions
S S
+ | . e .
MBQKK,%Fprsf(k,%)(l— E‘]on(kar_))) (85)
P, P, for photon stimulated XFH, and
FIG. 10. The Feynman diagrams for x-ray fluorescence holog- on P~y _ i _ E e
raphy(XFH). Thes-state core hole can be made by photoionization Mes(k, €)= oTes(K, 6)( 1 mJO”(k'r) (86)

(a), or by electron induced ionizatiof). The black dot represents N

the photon-object atom scattering amplitudehe continuum elec-  for electron stimulated XFH. Here the integrdyy(k,r) is
tron, p the p-state electron, ansl the s-state electron. Note that the given by Egs(27) and(32).

black dot is shorthand for two diagrams—namely, the crossed and The cross section is obtained by squaring the amplitude
uncrossed Compton diagrams shown in Fig. 3. and summing over the polarization vectors of the photon.
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€k detected. Since the incoming photon energy used in MEXH
P is not equal to E,— Ey), the two processes are not related by
time reversal invariance.

We discuss this further by displaying the relevant equa-
tion. In MEXH, the holographic object amplitude contribu-
tion to the total amplitude occurs because the initial photon
in the incoming beam with momentuky, and polarization

FIG. 11. The Feynman diagrams for multiple energy x-ray ho-g, is scattered elastically by the object atoms prior to absorp-
lography(MEXH). The notation is the same as Fig. 10. tion by the detector atom. If the total matrix element to pro-
duce the outgoing angle averaged MEXH fluorescence decay

Thus the cross section for the intensity of the XFH hologra C o : :

in the on-shell approximation is givenygenericall b 9"@Ms denotedR me(s_.iy(Ky ,:) and if the Thompson scattering
y by effects dominate, then the on-shell approximation for the ho-

lographic interference term is given by the expression

ok

da'_
a0

And again, when the high electron density regions of the

atoms are sufficiently well separated, we will recover the > . :
. . X ' ) Lo where o T Ky, represents the photon absorption pro-
usual classical holographic form in the far field limit via Eq. @Tmdko &) r€p pho prion pro

(30). cess, and once again the integﬂg{(lzb ,F) is given by Egs.
(27) and (32). The amplitude for MEXH given by Eq88)

and the amplitude for FXH given by Eq&5) and(86) are

not complex conjugates of one another. However, the phys-

ics of these two amplitudes is closely related.

S e -
?|T(k,&)|? 1—25Re10n(k,r*) . (87) .
Mk &) = ( 1— —Jon( ko ,F)) 0TndKy &), (89)

VIIl. MULTIPLE-ENERGY X-RAY HOLOGRAPHY
(MEXH)

Finally, we consider very briefly the physics of multiple-
energy x-ray holograph¢MEXH). In this case, a real photon IX. SUMMARY AND DISCUSSION
is sent into the sample from outside and we must consider

the interference between the direct path to the detector atonhg:ngai‘gemseh:x?e?attﬁg l;rrlgrrfgset:g)rlﬂal;th(reagir:t?c])is”?ohdlﬂrc]g d
and the single-scattering paths via the object atoms to thB ’ 9 P

detector atom. The Feynman diagrams for this interferencigISide a crystal will produce a holographic interference pat-
e

are shown in Fig. 11. Note that the Feynman diagrams fo rn in the far field outside the crystal. To use this new form

MEXH are not just the time reversed Feynman diagrams fOPT’]dg?)rt])'eé(z;i':IZi? Iqoggsragﬁ'svgeagﬁt ggswéreec;ieﬁggf .
photon induced XFH, and that there are three interferin | piitucdes. plitudes w u u

terms in MEXH ng quantum electrodynamics, and compared with the corre-
Within classical electrodynamics, MEXH has been relateolspondlng predictions of classical scalar electrodynamics. The
to XFH by the reciprocity theore;n, which can be Ioara_essential results for bremsstrahlung holography are displayed

hrased roughly as follows: Put the source outside th(i:n Egs.(77), (78),.and(82).. .
gample and gthg detector inside the sample, turn on the The total amplitudeM is the sum of the reference ampli-

source, and measure the electric field at the detector; if thivide R and the object gmphtud@. To obtamﬁvery .accurate
positions of the source and the detector are interchanged, tf@sults, the full expression for the quantity,(k,r) given by
electric field measured at the detector will be the same. ThiEd- (32) must be used. Its simpler asymptotic form given by
result comes from the time reversal invariance of Maxwell’sEQ. (30) is not accurate for the case in which the separation
equations. " between the source atom and the object atom is parallel to
How does this very reasonable classical result emergthe directionk of the detected photon, as shown in Fig. 5.
from the quantum electrodynamic treatment? It clearly is not The key feature in obtaining Eq&/7) and(82) is that the
just simple time reversal invariance, since there are threphotons that propagate from the source atom to the object
interfering diagrams in MEXH and only two interfering dia- atoms are essentially on-shell—the square of their four-
grams in XFH. There are three diagrams in MEXH becausenomenta is very close to zero. Section V is devoted to the
the incoming photons interfere to produce the atomic excitadetailed arguments for our on-shell separated atom approxi-
tions that lead to the fluorescence, and the outgoing fluoresnation. We show explicitly that all of the known short
cence photons interfere just as they do in XFH. Howeveranged off-shell virtual effects are negligibly small for the
since MEXH must average over many outgoing directions tdow (40—60 keVf electron energies used in the current ex-
increase the signal level, the interference effects in the outperiments. The underlying reason for this is that the atoms in
going photons will be washed otft,and we need only con- solids are too far apart for the off-shell photons or electrons,
sider the first two diagrams in Fig. 11. Then our questionproduced via bremsstrahlung or via fluorescence, to propa-
becomes how are these two diagrams related to the analgate from one atom to another.
gous diagrams for XFH shown in Fig. 10. They still are not It is interesting to compare the present case in which pho-
just the simple time reversed diagrams: in MEXH the Th-tons propagate between atoms with two examples from
ompson proces®r, in general, the Compton procgsecurs  nuclear physics(l) hadronic scattering from nuclei, artd)
in the incoming state of the photon that will produce thepion production in nucleon-nucleon or nucleon-nucleus col-
photoionization, whereas in XFH the Thompson process is ifisions. Beg’s theoreft applies to hadron-nuclear scattering
the outgoing photon state of energl (—E;) that will be  and states that, if the target nucleons are separated by dis-
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tances greater than the range of the hadron-nucleon interacan calculate cross sections reliably at the 4devel or
tion, then the hadron-nucleus scattering amplitude can bbetter because the atoms and the electrons in the atoms move
expressed in terms of on-shell hadron nucleon scattering anelatively slowly.
plitudes. This is called the separated scatterer The separability argument works extremely well for the
approximationt’=?° In this language, our results can be three x-ray holographiegXH, MEXH, and BXH) currently
stated as the confirmation that the analogous separated atamder experimental development. In a sense, it is quantum
approximation is valid. electrodynamics that requires the separated atom approxima-
In our first example, we want to consider the scattering otion to work so well since it supplies the forces responsible
hadrons from the nucleons inside the nucleus. In our confor the relatively slow motion of the atoms and of the elec-
densed matter physics example, we were able to consider thns in the atoms, and it also supplies the interactions be-
scattering of photons from essentially stationary atoms antlveen the atoms and the incoming and outgoing photons and
slowly moving electrons. However, in nuclei, the nucleonselectrons.
move extremely rapidly so that the separations between the Thus it is quantum electrodynamics that gives us our main
nucleons fluctuate and, in addition, the nucleons can overlapesults for bremsstrahlung holography summarized in Egs.
The average separation distance between nucleons is abdail)—(25), Eq.(77), and Eq.(82). Quantum electrodynamics
1.8 fm, which is about twice as big as the typical range ofshows that bremsstrahlung holography should work—the re-
hadron-nucleon interactiors-1 fm). However, in the case maining problems are experimental.
of very high energy hadronic beams, we can be reasonably
sure that the nucleons will not move during the passage of ACKNOWLEDGMENTS
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